0972 311 312 (prix appel local)

Apprentissage statistique : modélisation descriptive et introduction aux réseaux de neurones (RCP208)

Objectifs

Ce cours donne des éléments de base de l'analyse des données et de la modélisation descriptive, ainsi que des principes à mettre en œuvre pour traiter des applications réelles. Une introduction à la modélisation décisionnelle avec des réseaux de neurones est également présentée. L'analyse des données et la modélisation descriptive...En lire plus

Compétences

Compréhension et pratique de méthodes d'analyse des données multidimensionnelles, de reconnaissance des formes et de fouille de données.

Légende :

  100% Internet - national

Condition d'accès / publics visés

Cet enseignement s'adresse aux auditeurs souhaitant acquérir des connaissances de base sur l'analyse des données, la reconnaissance des formes et la fouille de données (data mining).
Prérequis obligatoires : avoir suivi le cycle préparatoire de l'EICNAM ou avoir un niveau équivalent (licence).

Objectifs pédagogiques

Ce cours donne des éléments de base de l'analyse des données et de la modélisation descriptive, ainsi que des principes à mettre en œuvre pour traiter des applications réelles. Une introduction à la modélisation décisionnelle avec des réseaux de neurones est également présentée. L'analyse des données et la modélisation descriptive aident à comprendre les données empiriques issues de phénomènes naturels, économiques ou socio-culturels. Cette compréhension facilite la mise en œuvre de méthodes performantes de construction de modèles décisionnels.
Les méthodes abordées ont de très nombreuses applications dans des domaines aussi divers que l'assurance qualité, les enquêtes d'opinion, le marketing, la gestion de la relation client, la climatologie, la sécurité, etc.
L'enseignement adopte une approche pragmatique, les séances de travaux pratiques permettant la mise en œuvre systématique des méthodes présentées.
Les unités d'enseignement RCP209 « Apprentissage statistique : modélisation décisionnelle et apprentissage profond », RCP211 « Intelligence artificielle avancée » et RCP217 « Intelligence artificielle pour des données multimédia » sont des suites recommandées de RCP208.

Compétences visées

Compréhension et pratique de méthodes d'analyse des données multidimensionnelles, de reconnaissance des formes et de fouille de données.

Niveau

Niveau 7 (Bac+5)

Contenu de la formation

Les thèmes abordés dans les séances de cours et de travaux pratiques (TP) sont :

  • Applications, nature des problèmes de modélisation et spécificités des données.
  • Analyse des données, réduction de dimension : méthodes factorielles.
  • Réduction non-linéaire de dimension : UMAP, t-SNE.
  • Sélection de variables.
  • Classification automatique : k-moyennes, DBSCAN.
  • Estimation de densités : noyaux, modèles de mélange.
  • Imputation des données manquantes.
  • Réseaux de neurones multi-couches : architectures, capacités d'approximation, apprentissage et régularisation, explicabilité.

Chaque séance de cours est suivie d'une séance de TP permettant de mettre en œuvre les méthodes présentées.
Les TP sont réalisés en utilisant principalement la plateforme Scikit-learn. Une introduction rapide au langage Python, à NumPy, à matplotlib et à Scikit-learn est prévue lors des premières séances de TP.

Modalités de validation

Examen.
Les comptes-rendus de TP seront notés et pris en compte dans l'évaluation.

Accompagnement et suivi

Sous l’autorité pédagogique du certificateur Cnam, les équipes du Cnam Bretagne vous offrent un accompagnement pendant votre parcours de formation à la fois sur les aspects administratifs, financiers, pédagogiques et techniques.

ECTS : 6

Modalité Volume horaire Employeur Pôle Emploi Auto-financement
 
45 heures 900 € 225 € 225 €
Indexation officielle
FORMACODES

[M0A2C1] intelligence artificielle - [M0A2] informatique - [M0] information

communication

[C0A1B0A4A0] analyse données - [C0A1B0A4] statistique descriptive - [C0A1B0] statistique - [C0A1] mathématiques - [C0] sciences

[M0A3B6] langage Python - [M0A3] langage informatique - [M0] information

Mots clés

Modélisation statistique;Régression linéaire; programmation;

Indicateurs de résultat

En savoir plus

INFOS
PRATIQUES

Durée

45 heures

Modalité

100% Internet - national  

Date de début des cours

07/02/2022

Date de fin des cours

08/05/2022

Accessibilité handicap

En savoir plus

Comment s’inscrire ?

En savoir plus