Analyse et calcul matriciel (MVA101)
Partie Analyse : Apprendre la représentation des fonctions par des séries, les principales transformations et leurs applications. Partie Algèbre : Apprendre le calcul matriciel.
Légende :
100% Internet - national
Avoir été reçu à l'UE MVA005 ou pouvoir justifier la réussite à un examen portant sur un programme de niveau comparable.
- Partie Analyse : Apprendre la représentation des fonctions par des séries, les principales transformations et leurs applications.
- Partie Algèbre : Apprendre le calcul matriciel.
Niveau 6 (Bac+3 et Bac+4)
1 Généralités sur les séries numériques
- Suites numériques : rappels.
- Séries numériques : définitions et exemples (Série géométrique) ; convergence absolue ; critères de convergence pour séries à termes positifs (règle de D'Alembert, règle de Cauchy, etc.) ; Critères de convergence pour séries à termes quelconques (Séries alternées, Règle d'Abel, etc.).
2 Représentation des fonctions
- Séries entières, disque de convergence, fonctions analytiques, développement en série entière des fonctions usuelles, application à la résolution de certaines équations différentielles.
- Fonctions périodiques, séries trigonométriques, coefficients de Fourier, Séries de Fourier, Théorème de Jordan-Dirichlet, Formule de Bessel-Parseval.
3 Transformation de Fourier
- Espaces L^1 et L^2 ; Transformée de Fourier ; Transformée de Fourier inverse ; propriétés de la Transformée de Fourier (Dilatation, Retard, Translation, Symétrie) ; Transformée de Fourier et dérivation ; formule de Bessel-Parseval ; Convolution.
4 Calcul matriciel.
- Matrices à coefficients réels (et éventuellement complexes), opérations sur les matrices.
- Déterminant, matrices inversibles. (On insistera sur la vision géométrique du déterminant et des matrices inversibles: le déterminant est une forme volume, les matrices inversibles conservent les parallélogrammes, les parallélépipèdes,...Le calcul du déterminant ne sera présenté qu'en dimension 2 et 3. Les considérations numériques pourront être évoquées pour justifier la nécessité de développer des outils de calcul scientifique performants.)
- Valeurs propres, vecteurs propres, multiplicité des valeurs propres, diagonalisation.
- Application au calcul des puissances d'une matrice et aux exponentielles de matrices. Exemple en mécanique: matrice d'inertie.
5 Résolution de systèmes différentiels
- Résolution des systèmes différentiels linéaires du premier ordre à coefficients constants par la transformation de Laplace ou en utilisant la notion d'exponentielle de matrice. A ce sujet on introduira rapidement la transformée de Laplace.
Sous l’autorité pédagogique du certificateur Cnam, les équipes du Cnam Bretagne vous offrent un accompagnement pendant votre parcours de formation à la fois sur les aspects administratifs, financiers, pédagogiques et techniques.
ECTS : 6
Modalité | Volume horaire | Employeur | Pôle Emploi | Auto-financement |
---|---|---|---|---|
|
45 heures | 900 € | 225 € | 225 € |
INFOS
PRATIQUES
45 heures
100% Internet - national
22/02/2021
26/06/2021