0972 311 312 
(prix appel local)

Données catégorielles (STA212)

Objectifs

Permettre aux ingénieurs, cadres d'entreprises ou d'administrations, médecins, chercheurs, de construire des modèles explicatifs de variables qualitatives. Le cours s'appuie sur la pratique du logiciel SAS, mis à disposition des auditeurs.

Légende :

  Formation ouverte et à distance (FOAD)

Condition d'accès / publics visés

Ce cours s'adresse en priorité aux auditeurs préparant le master MR123.
Il s'adresse également à des auditeurs préparant le diplôme d'actuaire.
Niveau requis : STA102 (régression et analyse de la variance) et STA104 (statistique mathématique).

Objectifs pédagogiques

Permettre aux ingénieurs, cadres d'entreprises ou d'administrations, médecins, chercheurs, de construire des modèles explicatifs de variables qualitatives. Le cours s'appuie sur la pratique du logiciel SAS, mis à disposition des auditeurs.

Niveau

Niveau 7 (Bac+5)

Contenu de la formation

Présentation des méthodes statistiques traitant des variables qualitatives
Principes généraux d'estimation d'un modèle (maximum de vraisemblance)

La régression logistique simple
Notion de variable latente
Les modèles PROBIT, LOGIT
Le modèle logistique et son interprétation
Analyse des résidus, des observations

La régression logistique multiple 
Le modèle : prédicteurs quantitatifs ou qualitatifs
Sélection de variables
Résumé des tests de validité générale d'un modèle
Tables de classement, courbe ROC
Interprétation des coefficients de la régression logistique : odds ratio
La régression logistique dans le cas où Y est une variable polytomique ordonnée
Aspects pratiques de la mise en oeuvre des méthodes de régression logistique
La procédure LOGISTIC

Présentation des modèles linéaires généralisés et de la procédure GENMOD
Régression de Poisson
Etude de contrastes

Modélisation d'une réponse multinomiale
Estimation par maximum de vraisemblance ou par moindres carrés généralisés
Etude de cas avec la procédure CATMOD

Comparaison de la régression logistique avec d'autres méthodes de modélisation d'une réponse qualitative
Analyse discriminante sur variables quantitatives et qualitatives
Arbres de décision
Eléments pratiques de création d'un score 
 
Méthodes PLS
Présentation de NIPALS, PLS1,PLS2
Applications: régression logistique PLS, analyse discriminante PLS
Modèles linéaires généralisés PLS

Modalités de validation

Projet(s)

Description des modalités de validation

Rédaction d'un mémoire utilisant les méthodes présentées en cours

Accompagnement et suivi

Sous l’autorité pédagogique du certificateur Cnam, les équipes du Cnam Bretagne vous offrent un accompagnement pendant votre parcours de formation à la fois sur les aspects administratifs, financiers, pédagogiques et techniques.

ECTS : 9

Modalité Volume horaire Employeur France travail Auto-financement
 
  1200 € 350 € 350 €

Indexation officielle

FORMACODES

[C0A1B0A4A0A0] analyse factorielle - [C0A1B0A4A0] analyse données - [C0A1B0A4] statistique descriptive - [C0A1B0] statistique - [C0A1] mathématiques - [C0] sciences

[C0A1B0A5A0A0] plan expérience - [C0A1B0A5A0] statistique inférentielle - [C0A1B0A5] théorie probabilités - [C0A1B0] statistique - [C0A1] mathématiques - [C0] sciences

Mots clés

Analyse factorielle, Statistique inférentielle, Analyse de variance, Modèle linéaire généralisé, Régression logistique

Indicateurs de résultat

En savoir plus

Dernière mise à jour : 01/09/2024

INFOS
PRATIQUES

Modalité

Formation ouverte et à distance (FOAD) 

Date de début des cours

17/02/2025

Date de fin des cours

21/06/2025

Accessibilité handicap

En savoir plus

Comment s’inscrire ?

En savoir plus